LYAPUNOV_EXPONENTS

QUANTIFYING_CHAOS // MODULE_10

← Return

SYSTEM_PARAMETERS

2.500
4.000
1000
500

λ = lim(n→∞) (1/n) Σ ln|r(1-2xᵢ)|

LIVE_RENDER // D3.JS

DATA_LOG: LYAPUNOV_ANALYSIS

The Lyapunov exponent provides the most fundamental quantitative measure of chaos, characterizing the average rate at which nearby trajectories diverge in phase space. A positive exponent indicates exponential divergence of nearby trajectories and serves as the primary diagnostic for chaos.

Lyapunov Time Examples

  • • Weather systems: ~5 days
  • • Chaotic circuits: ~1 ms
  • • Solar system: 4-5 million years

Kaplan-Yorke Dimension

DL = j + (λ₁ + ... + λj) / |λj+1|

Relates Lyapunov exponents to fractal dimension

SAVE_CONFIGURATION

Please log in to save configurations

LOG_IN

SHARE_CONFIGURATION

Please log in to share configurations

LOG_IN